

PRE-HARVEST TREATMENT WITH PUTRESCINE, SALICYLIC ACID AND CALCIUM CHLORIDE: A STRATEGY TO IMPROVE POSTHARVEST PHYSICAL QUALITY OF PLUM CV. SATLUJ PURPLE UNDER AMBIENT STORAGE

Gunjan Joshi^{1*}, Omveer Singh¹, D. C. Dimri¹, Rajesh Kumar¹, Pratibha¹ and Deepti Shankhdhar²

¹Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India

²Department of Plant Physiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India

*Corresponding author E-mail: gunjanj861@gmail.com

(Date of Receiving : 12-10-2025; Date of Acceptance : 28-12-2025)

The present experiment entitled pre-harvest treatment with putrescine, salicylic acid and calcium chloride: a strategy to improve postharvest physical quality of plum cv. Satluj Purple under ambient storage was performed at Horticulture Research Centre, Patharchatta and Postharvest Laboratory of Department of Horticulture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Udhampur, Jammu and Kashmir, India during 2023 and 2024. The experiment was conducted in Factorial Randomized Block Design with three replications. Foliar application of three different chemicals viz. putrescine (1.0, 1.5, 2.0 and 2.5 mM/L), salicylic acid (1.0, 1.5, 2.0 and 2.5 mM/L) and calcium chloride (1.0, 1.5, 2.0 and 2.5%) with Tween-20 (0.01%) as a surfactant was applied approximately 2 week before the anticipated harvesting. Harvested fruits for quality attributes were observed on 0, 3, 6 and 9th day under ambient storage. Among all treatments 2.0 mM of putrescine was found superior, followed by 2.5 mM of salicylic acid with respect to minimum change in fruit physical quality attributes like fruit length, width, weight, per cent weight loss, per cent shrinkage and per cent decay.

Keywords : Pre-harvest, Plum, Putrescine, Salicylic Acid, Calcium Chloride, Shrinkage, Decay.

ABSTRACT

Introduction

Plum is an important stone fruit, mostly grown in the temperate or cool subtropical regions of the world. The perishable nature of fruit with short postharvest life makes it vulnerable to bruising and damage during harvesting, transportation or handling. Damaged areas on the fruit surface provide an entry points for pathogens like bacteria and fungi, accelerating the decomposition process. Ethylene is the hormone which is responsible for triggering some physico-chemical changes associated with ripening, such as changes in colour, aroma, texture and flavour in climacteric fruits while in non-climacteric fruits, it has little or no effect on the ripening process (Giovannoni, 2001). After picking, ripening proceeds and fruit lose sensory quality attributes very quickly. Some strategies have been proposed to increase the shelf life of fruit, such as cold storage and treatments with heat, calcium,

polyamines, salicylic acid, etc. (Luna-Guzman *et al.*, 1999).

Putrescine, a type of polyamine plays a significant role in regulating the quality of fruits and their post-harvest life. It is known to influence a range of biochemical and cellular functions that can affect fruit quality and its shelf life after harvest. In fruit crops application of putrescine may change cell wall stability by promoting the synthesis of proteins that stabilize cell membranes and protect them from damage by delaying this process (Messiaen *et al.*, 1997). Other beneficial effects, such as delayed colour changes, reduced mechanical damage, delay in senescence process, enhanced stress tolerance, modulation of ethylene production and chilling injury susceptibility with increased shelf life, have been reported for both climacteric and non-climacteric fruits (Serrano *et al.*, 1996). Similarly salicylic acid (SA) also shows a

potential effectiveness in maintaining fruit quality and extension of shelf life by delaying fruit ripening and softening, decreasing decay and maintaining the flavour of fruit (Baswal *et al.*, 2020, Hazarika and Marak, 2022). According to Asghari and Aghdam (2010), salicylic acid is a safe and natural phenolic chemical, having a great potential to reduce postharvest losses in horticulture crops. Calcium is an essential plant nutrient closely related to quality and firmness of fruits (Sams, 1999), as the divalent cation (Ca^{2+}) is required for various structural roles in the cell wall and membranes. It acts as a counter-cation for inorganic and organic anions in the vacuole and an intracellular messenger in the cytosol (Marschner, 1995).

The maintenance of postharvest life with prevention of postharvest losses became critical for ensuring the quality, safety and sustainability of food supply chains. The reduction of postharvest losses not only helps in reducing wastages but also ensures that consumers have access to fresh and nutritious produce. Investment in efficient pre and postharvest management practices is crucial for both economic and environmental sustainability. Ample information regarding the postharvest application of these chemicals is available but very limited information for pre-harvest application and its effect on postharvest quality is available which is yet to be explored. Hence, the aim of the present study was to investigate the role of pre-harvest application of putrescine, salicylic acid and calcium chloride on postharvest physical quality of plum fruits (cv. Satluj Purple) under ambient storage condition.

Materials and Methods

Experimental site: The present experiment entitled pre-harvest treatment with putrescine, salicylic acid and calcium chloride: a strategy to improve postharvest physical quality of plum cv. Satluj Purple under ambient storage condition was conducted at G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand. The experimental site is situated in the *Tarai* region of Uttarakhand, where the soil classified as Mollisol”.

Experimental material and details: Eighteen years old plum trees cv. Satluj Purple was selected having uniform size and vigour at Horticultural Research Centre Pattharchatta. The experiment was consisted of thirteen treatments including control with three replications. Pre-harvest application were sprayed with an aqueous solution containing different concentrations of putrescine (1.0, 1.5, 2.0 and 2.5 mM/L), salicylic acid (1.0, 1.5, 2.0 and 2.5 mM/L) and calcium chloride

(1.0, 1.5, 2.0 and 2.5%) with Tween-20 (0.01%) as a surfactant, approximately 2 week before of the anticipated harvesting. Mature fruits harvested, which were free from visual symptoms of any disease or blemishes and transported to the post-harvest laboratory. After pre-cooling, diseased, blemished and irregular in size, shape or colour fruits were manually removed. The remaining samples were gently washed to eliminate surface contaminants, blotted dry with sterile muslin cloth and air-dried at room temperature under a ceiling fan. Finally, they were packed in polythene bags and stored under ambient conditions according to the treatment details and replications.

Observation recorded: Observations of fruit physical parameters like- fruit length, width, weight, per cent weight loss, per cent shrinkage and per cent decay were recorded on 0, 3, 6 and 9th day of ambient storage for both 2023 and 2024. The mean values for each parameter across both years are presented here.

Fruit length

Length of each fruit was measured with the help of vernier caliper and recorded at each storage interval in millimeters.

Fruit width

Width of each fruit was measured with the help of vernier caliper and recorded at each storage interval in millimeters.

Fruit weight

At each storage interval, fruit weight was measured using a digital weighing balance and recorded in grams.

Weight loss (%)

Per cent loss in weight was calculated at each storage interval as the cumulative reduction in fruit weight relative to the initial weight recorded before storage, using the following formula:

$$\text{Weight loss (\%)} = \frac{\text{Initial weight of fruits} - \text{Weight of fruits on the day of observation}}{\text{Initial weight of fruits}} \times 100$$

Shrinkage (%)

Shrinkage in fruit diameter was calculated at each storage interval as a cumulative reduction in diameter of fruits under various treatments based on the initial fruit diameter before storage.

$$\text{Shrinkage (\%)} = \frac{\text{Initial diameter of fruits} - \text{Diameter of fruits on the day of observation}}{\text{Initial diameter of fruits}} \times 100$$

Decay (%)

The number of fruits exhibiting visible signs of decay or rotting was counted separately for each

treatment at every storage interval. The incidence of decay was expressed as a percentage of total fruits decayed.

$$\text{Decay (\%)} = \frac{\text{Number of decayed fruits}}{\text{Number of total fruits}} \times 100$$

Results and Discussion

Fruit length

Storage of climacteric fruit for prolongs storage period leads to reduction in size of any fruits, which occur naturally and hamper the consumer acceptance. The pre-harvest application of these treatments exhibited significant difference with respect to change in fruit length in both years (2023 and 2024) and their mean values are summarised in Table 1 and Figure 1. The results revealed significant difference among the treatments and storage interval. Fruit length significantly reduced from 40.87 mm to 35.98 mm, from initial day of observation to till last day of observation, indicating that reduction in length of fruit is a natural phenomenon while, storing the fruit in ambient storage. However, each treatment showed a different rate in fruit length reduction throughout the storage. The maximum reduction of length (17.12%) recorded with untreated fruit (T_{13}), followed by 13.98% in 1.5 mM of salicylic acid (T_6), however the minimum reduction of 7.11% was noted in 2.0 mM of putrescine (T_3) and followed by 8.24% in 2.5 mM of salicylic acid (T_8). The least reduction with pre-harvest application of putrescine application (2.0 mM) may be due to the role of putrescine in inhibiting the activity of cell wall degradation enzymes like pectin methylesterase and cellulase (Dibble *et al.*, 1988; Kramer *et al.*, 1991), which maintain the fruit firmness for longer time as well as the fruit length for longer period. Beside putrescine salicylic acid at higher concentration (2.5 mM) also showed effectiveness to retain the size to some extent. A phenolic phytohormone, which provides defence against various biotic and abiotic stresses (Peng *et al.*, 2021; Meng *et al.*, 2023) as well as exert an antagonistic role with

ethylene, which leads to delayed senescence (Madhav *et al.*, 2021; Zhang *et al.*, 2021) and may show minimum reduction in fruit length. However, the least concentration of these chemical are not sufficient to maintain the fruit size. Similar supporting research was reported by in 'Angelino' plum, Serrano *et al.* (2003), Khan *et al.* (2008) and Davaryenjad *et al.* (2015) in plum and Archana *et al.* (2015) in banana cv. grand naine.

Fruit width

The data pertaining on effect of different foliar treatments and storage duration on width of plum (cv. Satluj Purple) fruits under ambient storage conditions presented in Table 1 and Figure 2. The observation regarding fruit width showed a significant difference among the different treatment. The minimum reduction of 7.58% was noted in 2.0 mM of putrescine (T_3), closely followed by 7.97% in 2.5 mM of salicylic acid (T_8). In contrast, maximum decrease in fruit width (20.54%) was recorded in control treatment (T_{13}) throughout the storage. The possible reason behind reduction in fruit width during storage is might be due to continuous ripening after harvest. Ethylene helps in activation of ripening-related genes as well as increases the respiration rate and accelerates transpiration. The minimal reduction in fruit width may be attributed to delay ripening with reduced respiration rate induced by the putrescine treatment (Khan and Ali, 2018). The probable reason behind this may be that both putrescine and ethylene share common biosynthesis precursor SAM (S-adenosyl methionine) and which impart inimical impact on ripening (Valero *et al.*, 2002). After putrescine, salicylic acid also showed significantly maintained fruit width throughout the storage period. The probable reason behind this may be its potential role in maintain the cell integrity and reduced chilling injury symptoms though out the storage (Haider *et al.*, 2020). Our findings were allied with previous studied of Davaryenjad *et al.* (2015) in plum cv. Santa Rosa, Hussain *et al.* (2021) in loquat fruit as well as Amanullah *et al.* (2017) in guava fruits.

Table 1: Effect of different treatments and storage interval on length and width of plum (cv. Satluj Purple) fruits during ambient storage

Treatments (T)	Fruit length (mm)					Fruit width (mm)						
	Storage interval (D)					Storage interval (D)						
	D ₀	D ₃	D ₆	D ₉	Mean	% decrease	D ₀	D ₃	D ₆	D ₉	Mean	% decrease
T ₁ (1.0 mM PUT)	40.82	39.42	37.80	36.02	38.51	11.77	40.58	39.31	37.40	35.60	38.22	12.27
T ₂ (1.5 mM PUT)	41.03	39.60	37.99	36.16	38.70	11.87	40.89	39.67	37.93	36.06	38.64	11.81
T ₃ (2.0 mM PUT)	41.91	41.21	40.20	38.93	40.56	7.11	42.34	41.62	40.41	39.13	40.87	7.58
T ₄ (2.5 mM PUT)	40.96	39.76	38.22	36.11	38.76	11.83	41.34	39.93	38.09	36.44	38.95	11.85
T ₅ (1.0 mM SA)	40.28	38.66	36.81	34.70	37.61	13.85	40.13	38.80	36.69	34.36	37.50	14.38

T₆(1.5 mM SA)	40.23	38.32	36.44	34.61	37.40	13.98	40.21	38.62	36.57	34.03	37.36	15.37
T₇(2.0 mM SA)	41.60	39.97	38.19	36.24	39.00	12.88	41.04	39.91	38.22	36.31	38.87	11.53
T₈(2.5 mM SA)	41.57	40.67	39.67	38.15	40.01	8.24	41.76	40.83	39.35	38.43	40.09	7.97
T₉(1.0% CaCl₂)	40.65	38.84	37.20	35.26	37.99	13.25	40.63	39.00	36.73	34.80	37.79	14.35
T₁₀(1.5% CaCl₂)	40.66	39.10	37.50	35.72	38.24	12.16	41.02	39.59	37.68	35.25	38.39	14.07
T₁₁(2.0% CaCl₂)	41.19	39.68	37.76	35.78	38.60	13.14	40.95	39.79	37.94	35.73	38.60	12.75
T₁₂(2.5% CaCl₂)	41.01	39.95	38.68	37.32	39.24	9.00	41.49	39.85	38.26	37.01	39.15	10.80
T₁₃(Control)	39.45	37.39	35.12	32.70	36.17	17.12	40.06	38.03	35.37	31.83	36.32	20.54
Mean	40.87	39.43	37.81	35.98							40.96	39.61
											37.74	35.77
Factors		C.D. at 5%			SE(m)		Factors		C.D. at 5%		SE(m)	
Factor (T)		0.80			0.29		Factor (T)		0.50		0.18	
Factor (D)		0.44			0.16		Factor (D)		0.28		0.10	
Factor (T x D)		N/A			0.57		Factor (T x D)		1.01		0.36	

Where, PUT= Putrescine, SA= Salicylic acid and CaCl₂= Calcium Chloride

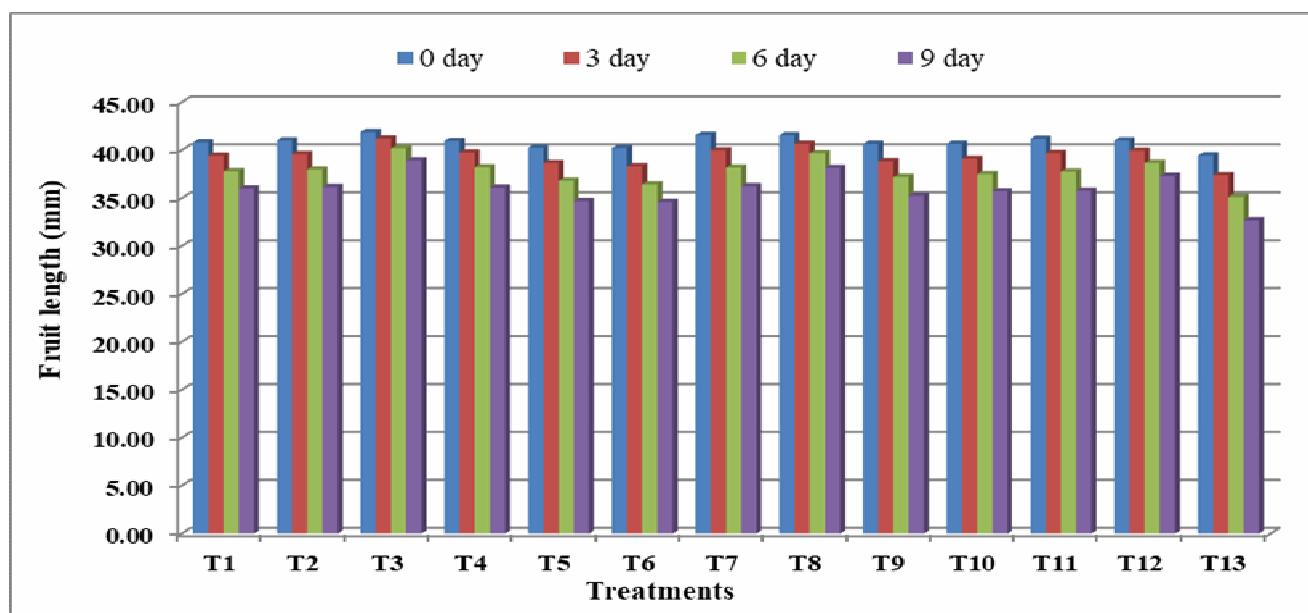


Fig. 1: Effect of different treatments and storage interval on length of plum (cv. Satluj Purple) fruits during ambient storage

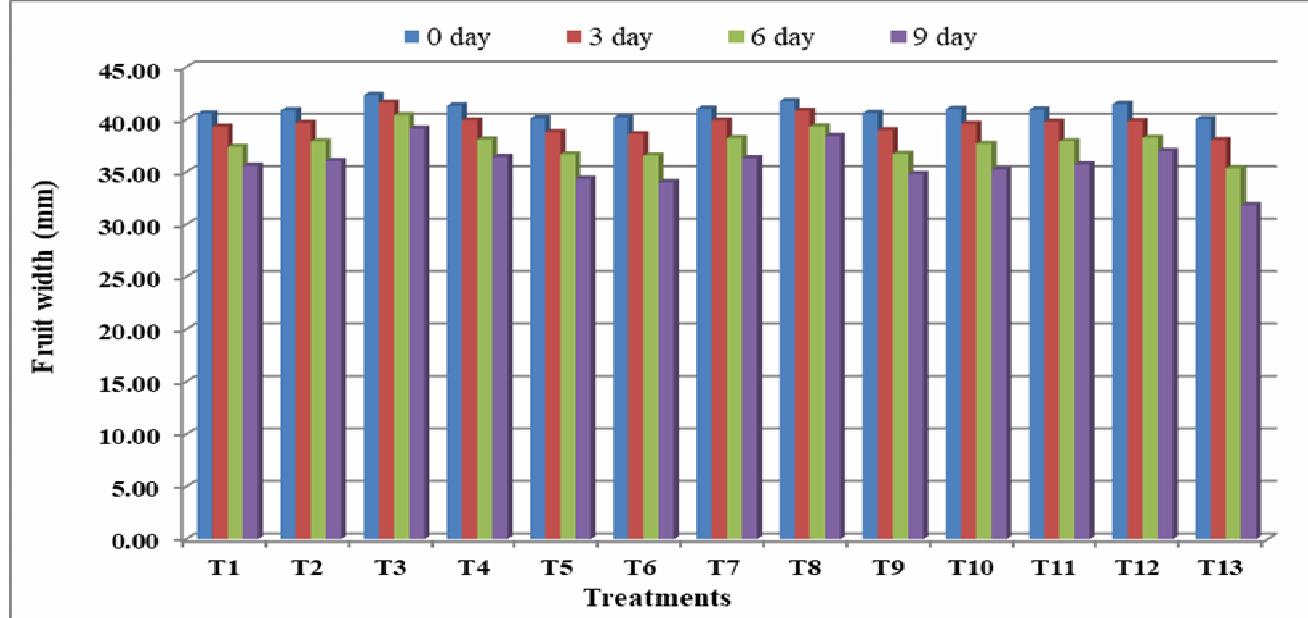


Fig. 2: Effect of different treatments and storage interval on width of plum (cv. Satluj Purple) fruits during ambient storage

Fruit weight

Effect of pre-harvest foliar spray of different treatments and storage interval on weight of plum (cv. Satluj Purple) fruits under ambient storage conditions showed significant difference and presented in Table 2 and Figure 3. Among different treatments, a maximum decrease in weight (24.55%) was noted in control, followed by 19.56% in T₅ (1.0 mM of salicylic acid). In contrast, minimum decrease of 9.41 and 10.83% was observed in T₃ (2.0 mM of putrescine) and T₈ (2.5 mM of salicylic acid), respectively. Escape of water through surface transpiration, ripening and respiration after harvest starts consuming stored sugars and degradation of cell membrane which leads to loss in fruit weight and resulted into withering, shrinkage and a reduction in fruit firmness (Chen *et al.*, 2024), which decreases the quality of fruits, their shelf life and marketing value as well as consumer acceptance (Shibairo *et al.*, 2002). Application of putrescine reported minimum loss in weight, might be due to reduced metabolic breakdowns with slow senescence related processes, which results into less conversion of stored compounds with minimum dry matter loss. Our findings are in agreement with the work reported by Hosseini *et al.* (2017) in pear cv. Spadona, Serrano *et al.* (2003) in plum, Anju *et al.* (2014) in mango, Archana *et al.* (2015) in banana, Tareen *et al.* (2012) in peach cv. Florida King and Awad (2013) in peach cv. Florida Prince. Martinez-Romero *et al.* (2002) also found that putrescine treated fruits showed minimum fruit weight loss than controls.

Weight loss

The observation regarding per cent loss in weight of plum (cv. Satluj Purple) fruits during ambient

storage (Table 2 and Figure 4) showed that all treatment had a significant impact on the per cent loss in fruit weight. Among different treatments the untreated fruit showed maximum loss of fruit weight (25.36%) during storage period, when comparing with other treatment. However treatment T₃ (2.0 mM of putrescine) followed by T₈ (2.5 mM of salicylic acid) showed significantly lower weight loss i.e. 9.37 and 10.76% respectively. The acceleration driven by cellular breakdown of the plum fruits may be the reason for weight reduction throughout the storage period. Under the ambient storage, foliar application of putrescine at 2.0 mM significantly reduces the weight loss. Putrescine helps to maintain membrane integrity and reduces water loss via better control over cuticle and cell wall leakage and slows down the respiration process (Martinez-Romero *et al.*, 2002). Delayed ripening or aging processes with slow down ethylene production leads to delayed softening, delaying chlorophyll degradation, etc. with application of putrescine, keeps the fruit fresh for longer period. After putrescine, foliar application of salicylic acid also effectively reduced physiological weight loss, although lower concentrations of salicylic acid (1.0 and 1.5 mM) were less efficacious. This may be because higher concentrations of salicylic acid better reduce transpiration rates, which might be linked to decreased activity of hydrolytic cell-wall enzymes (Ilic *et al.*, 2001). Similar findings were noted by Kaur and Kaur (2025) in plum cv. Satluj Purple, Gupta *et al.* (2010) in peach cv. Earli Grande, Bajaj (2004) in Baggugosha pear, Singh (2005) in ber cv. Umran, Malik *et al.* (2005) in mango cv. Kensington Pride as well as Jawandha *et al.* (2012) in mango.

Table 2: Effect of different treatments and storage interval on weight and per cent weight loss of plum (cv. Satluj Purple) fruits during ambient storage

Treatments (T)	Fruit weight (g)						Weight loss (%)				
	Storage interval (D)					% decrease	Storage interval (D)				Mean
	D ₀	D ₃	D ₆	D ₉	Mean		D ₀	D ₃	D ₆	D ₉	
T ₁ (1.0 mM PUT)	38.61	36.97	35.00	32.16	35.69	16.71	0.00	4.26	9.36	16.73	7.59
T ₂ (1.5 mM PUT)	39.22	37.75	35.82	33.17	36.49	15.43	0.00	3.76	8.63	15.32	6.93
T ₃ (2.0 mM PUT)	41.36	40.46	39.27	37.47	39.64	9.41	0.00	2.16	5.07	9.37	4.15
T ₄ (2.5 mM PUT)	39.59	38.38	36.43	34.01	37.10	14.09	0.00	3.04	7.98	14.07	6.27
T ₅ (1.0 mM SA)	38.66	36.53	34.37	31.10	35.17	19.56	0.00	5.51	11.17	19.58	9.07
T ₆ (1.5 mM SA)	39.05	37.08	34.58	31.47	35.54	19.41	0.00	5.02	11.47	19.41	8.97
T ₇ (2.0 mM SA)	39.44	38.06	36.44	34.00	36.99	13.79	0.00	3.49	7.57	13.77	6.21
T ₈ (2.5 mM SA)	41.28	40.24	38.86	36.81	39.29	10.83	0.00	2.52	5.88	10.76	4.79
T ₉ (1.0% CaCl ₂)	38.31	36.85	34.66	31.74	35.39	17.15	0.00	3.80	9.48	17.11	7.60
T ₁₀ (1.5% CaCl ₂)	39.88	37.91	35.77	32.99	36.64	17.28	0.00	4.89	10.25	17.25	8.10
T ₁₁ (2.0% CaCl ₂)	40.30	38.84	36.68	33.96	37.44	15.73	0.00	3.62	8.96	15.69	7.07
T ₁₂ (2.5% CaCl ₂)	39.97	38.65	37.05	34.67	37.59	13.26	0.00	3.28	7.26	13.25	5.95
T ₁₃ (Control)	38.29	35.90	33.03	28.89	34.03	24.55	0.00	6.23	13.77	25.36	11.34

Mean	39.54	37.97	36.00	33.26			0.00	3.97	8.99	15.97	
Factors	C.D. at 5%			SE(m)	Factors			C.D. at 5%	SE(m)		
Factor (T)		1.12		0.40	Factor (T)		0.97	0.34			
Factor (D)		0.62		0.22	Factor (D)		0.54	0.19			
Factor (T x D)		N/A		0.80	Factor (T x D)		1.93	0.69			

Where, PUT= Putrescine, SA= Salicylic acid and CaCl_2 = Calcium Chloride

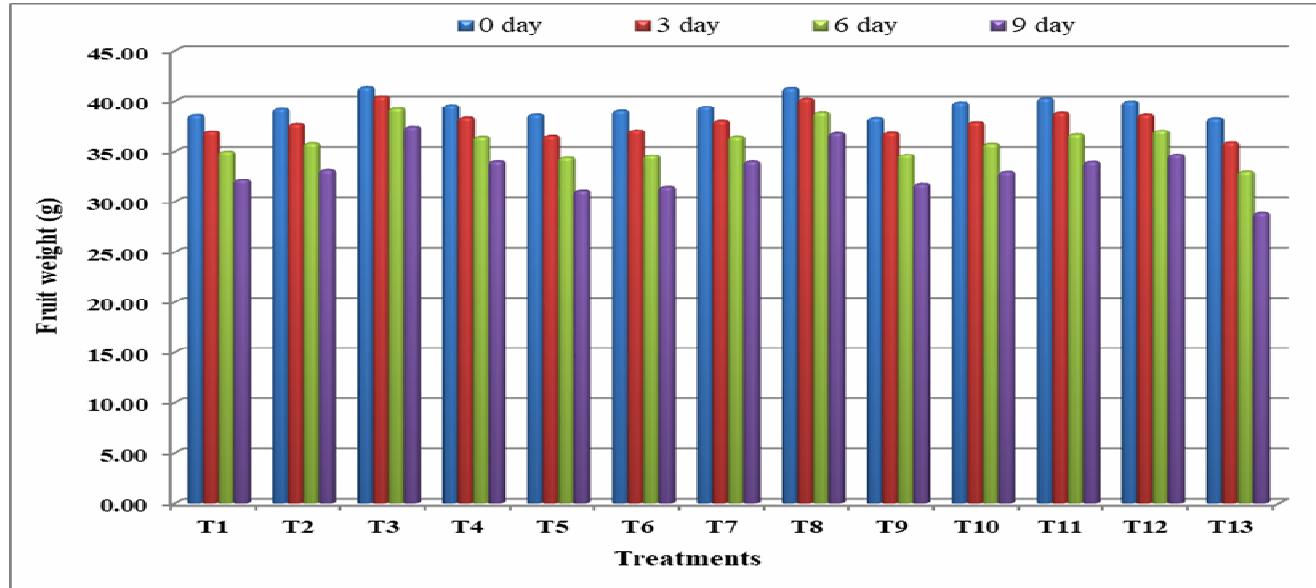


Fig. 3: Effect of pre-harvest treatments and storage interval on fruit weight of plum (cv. Satluj Purple) fruits during ambient storage

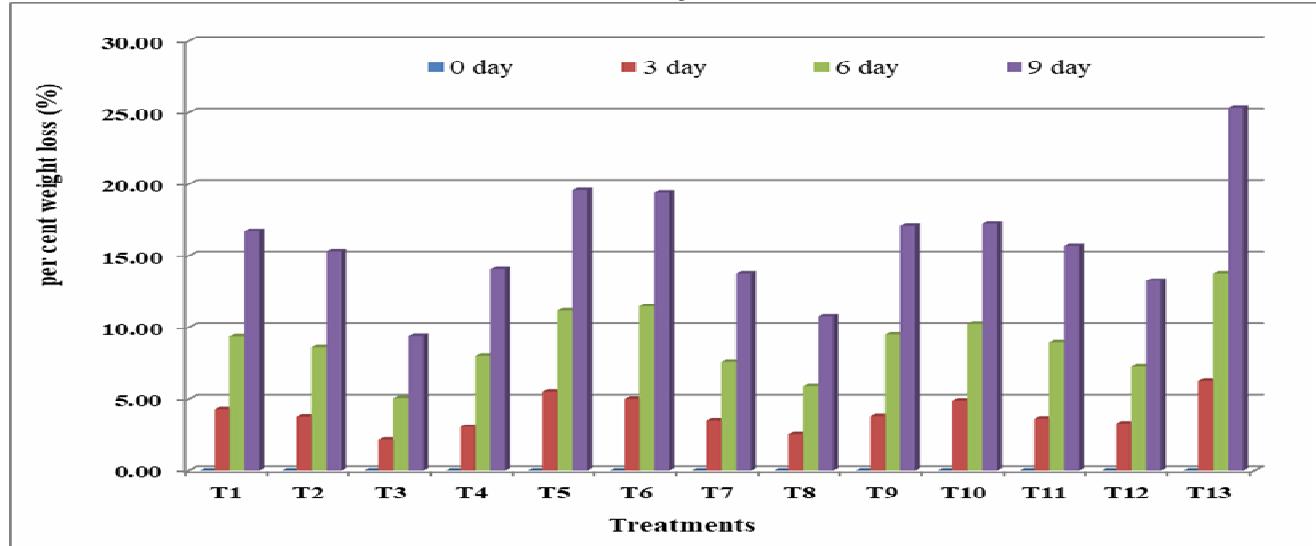


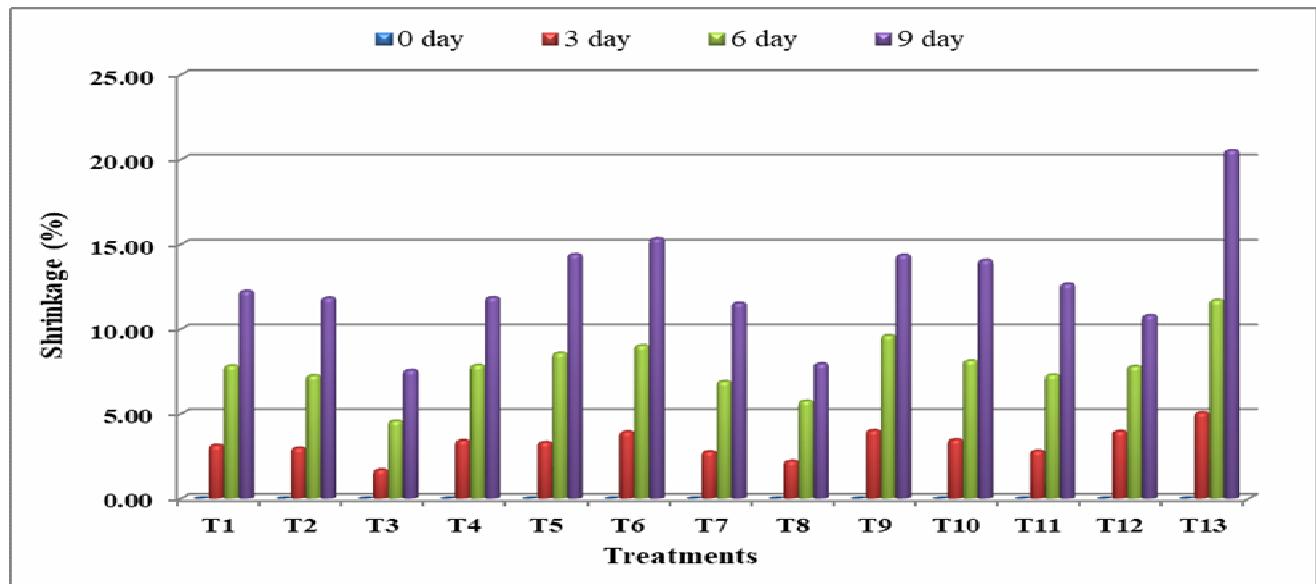
Fig. 4: Effect of pre-harvest treatments and storage interval on per cent weight loss of plum (cv. Satluj Purple) fruits during ambient storage

Shrinkage

The data related to shrinkage of plum fruit cv. Satluj Purple during ambient storage presented in Table 3 and Figure 5. Significant differences were found among treatments. Treatments T₃ (2.0 mM of putrescine) recorded the lowest fruit shrinkage (7.56%) on last day of observation, which was statistically *at par* with T₈ (2.5 mM of salicylic acid) at 7.94%,

followed by T₁₂ (2.5% of calcium chloride) with 10.80%. However, T₁₃ (control) exhibited the highest fruit shrinkage (20.53%), highlighting the beneficial impact of pre-harvest foliar applications in reducing shrinkage during extended storage. With respect to storage intervals, a consistent increase in shrinkage was observed over the period of time. After harvesting of fruits, fruits continue to undergo transpiration until

senescence. These physiological changes result in a wrinkled appearance and reduced market quality of the fruit (Gidado *et al.*, 2024). Fruits physiological and physical attributes are also responsible for susceptibility to water loss, factors such as thickness of skin, cuticular composition, internal structure as well as metabolic activity (Konarska, 2015). The application of putrescine and higher concentrations of salicylic acid resulted in the lowest shrinkage percentage, likely due to their roles in maintaining membrane integrity, suppressing ethylene production and slowing senescence-related metabolic activity (i.e. anti-senescence properties), which help to reduce the rate of respiration and delay the ripening process, thereby extending the shelf life and minimizing shrivelling during storage. The untreated fruit as well as lower concentrations underwent the rapid ripening process, which causes the more shrinkage per cent during the storage. Similar trend is corroborated by previous studies, Kaur and Kaur (2025) in plum cv. Satluj purple, Tareen *et al.* (2012) and Khademi and Ershadi (2013) in peach fruits cv. Florda King and cv. Elberta.


Decay

The data regarding the percentage of fruit decay in plum cv. Satluj Purple during ambient storage tabulated in Table 3 and Figure 6. The results showed statistically significant variations among the

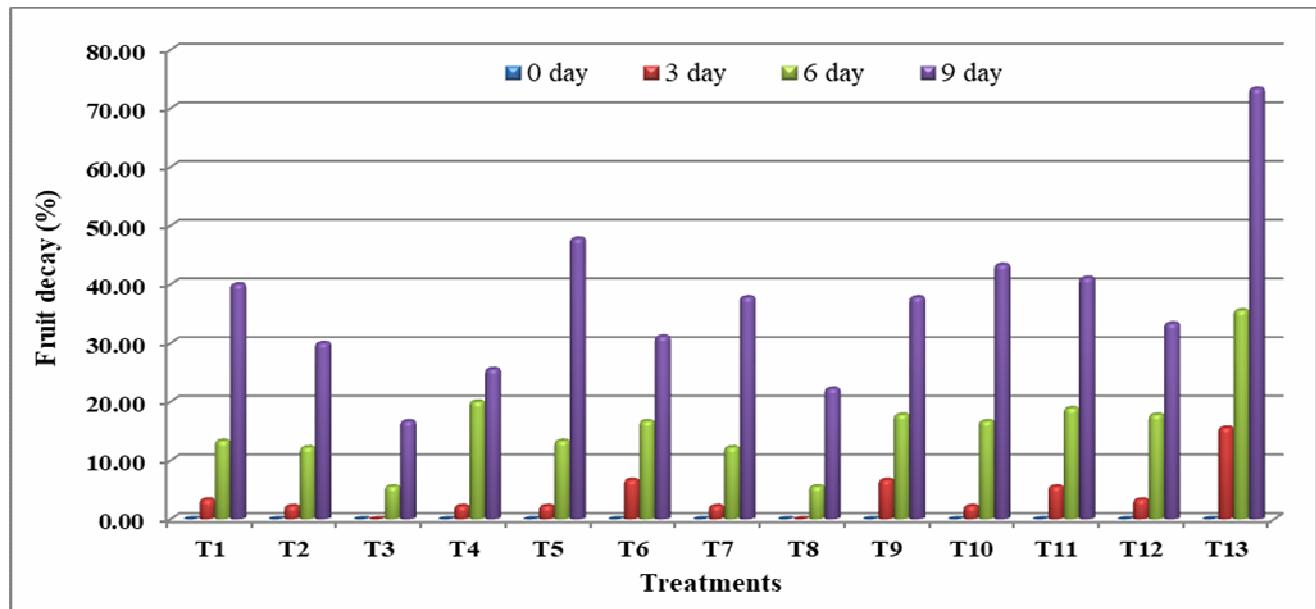

treatments. Among the various treatments, on last day of observation the lowest decay (16.67%) was recorded in T₃, closely followed by T₈ (22.22%), whereas the highest value (73.33%) was observed in T₁₃, demonstrating that pre-harvest foliar applications can substantially reduce decay progression, especially during extended storage. As storage duration advanced, decay percentage increased markedly. It rose steadily from 4.02% on day 3 to 15.81% on day 6 and reached a peak of 36.92% on the 9th day, highlighting the role of storage length in promoting fruit deterioration. Fruit decay during storage is primarily caused by a combination of physiological breakdown and microbial activity. Loss of water during storage leads to tissue softening and skin collapse, making the fruit more vulnerable to infection (Coggins *et al.*, 1969). As ripening progresses, the cell wall structure degrades, sugar levels increase and natural defence mechanisms weaken, thereby creating favourable conditions for pathogen invasion. These processes result in visible symptoms of decay such as rotting, discolouration and shrivelling. Supportive evidences were reported by Zaghloul *et al.* (2016) in peach, Hosseini *et al.* (2017) in pear and Martinez-Romero *et al.* (1999) in lemon. Application of salicylic acid also noted to reduces the postharvest chilling and rotting like appearance in mango (Zainuri *et al.* 2001) and apple (Krishna *et al.*, 2012).

Table 3: Effect of different treatments and storage interval on per cent shrinkage and per cent decay of plum (cv. Satluj Purple) fruits during ambient storage

Treatment (T)	Shrinkage (%)					Decay (%)				
	Storage interval (D)					Storage interval (D)				
	D ₀	D ₃	D ₆	D ₉	Mean	D ₀	D ₃	D ₆	D ₉	Mean
T ₁ (1.0 mM PUT)	0.00	3.14	7.83	12.22	5.80	0.00	3.33	13.33	40.00	14.17
T ₂ (1.5 mM PUT)	0.00	2.98	7.25	11.83	5.51	0.00	2.22	12.22	30.00	11.11
T ₃ (2.0 mM PUT)	0.00	1.70	4.56	7.56	3.45	0.00	0.00	5.56	16.67	5.56
T ₄ (2.5 mM PUT)	0.00	3.42	7.86	11.85	5.78	0.00	2.22	20.00	25.56	11.94
T ₅ (1.0 mM SA)	0.00	3.31	8.57	14.39	6.57	0.00	2.22	13.33	47.78	15.83
T ₆ (1.5 mM SA)	0.00	3.93	9.02	15.33	7.07	0.00	6.67	16.67	31.11	13.61
T ₇ (2.0 mM SA)	0.00	2.77	6.90	11.53	5.30	0.00	2.22	12.22	37.78	13.06
T ₈ (2.5 mM SA)	0.00	2.20	5.75	7.94	3.98	0.00	0.00	5.56	22.22	6.94
T ₉ (1.0% CaCl ₂)	0.00	4.01	9.61	14.36	6.99	0.00	6.67	17.78	37.78	15.56
T ₁₀ (1.5% CaCl ₂)	0.00	3.47	8.13	14.05	6.41	0.00	2.22	16.67	43.33	15.56
T ₁₁ (2.0% CaCl ₂)	0.00	2.81	7.29	12.65	5.69	0.00	5.56	18.89	41.11	16.39
T ₁₂ (2.5% CaCl ₂)	0.00	3.96	7.79	10.80	5.64	0.00	3.33	17.78	33.33	13.61
T ₁₃ (Control)	0.00	5.06	11.69	20.53	9.32	0.00	15.56	35.56	73.33	31.11
Mean	0.00	3.29	7.86	12.70		0.00	4.02	15.81	36.92	
Factors	C.D. at 5%			SE(m)		Factors	C.D. at 5%		SE(m)	
Factor (T)	0.73			0.26		Factor (T)	3.97		1.41	
Factor (D)	0.40			0.14		Factor (D)	2.20		0.78	
Factor (T x D)	1.45			0.52		Factor (T x D)	7.94		2.83	

Fig. 5: Effect of pre-harvest treatments and storage interval on per cent shrinkage of plum (cv. Satluj Purple) fruits during ambient storage

Fig. 6: Effect of pre-harvest treatments and storage interval on per cent decay (%) of plum (cv. Satluj Purple) fruits under ambient storage conditions

Conclusion

The results of above experimental finding revealed that among different treatments 2.0 mM of putrescine was found superior with respect to most of the quality attributes like fruit length, width, weight, per cent weight loss, per cent shrinkage and per cent decay, which was followed by 2.5 mM of salicylic acid. Conversely, the minimum values for all the parameters were observed in untreated fruits (control).

Acknowledgement

I would like to express my sincere gratitude to my advisor Dr. Omveer Singh, for their unwavering guidance, intuitive feedback and valuable support throughout this research. I also want to extend my sincere thanks to other co-authors for their exceptional collaboration, insightful contributions and dedication throughout the study. We are also thankful to the anonymous reviewers who gave constructive critiques and helpful suggestions. Finally, I am grateful to all my colleagues and peers who helped me by discussing

ideas, sharing resources and supporting me during the research process.

References

Amanullah, S., Sajid, M., Qamar, M.B. and Ahmad, S. (2017). Postharvest treatment of salicylic acid on guava to enhance the shelf life at ambient temperature. *Int. J. biosci.*, **10(3)**, 92-106.

Anju, B., Raj, K.K., Monica, R. and Neeraj, G. (2014). Effect of polyamines on shelf life and chilling injury of mango cv. Dashehari. *The Bioscan.*, **9(3)**, 1097-1100.

Archana, T.J., Suresha, G.J. and Swamy, G.S.K. (2015). Influence of Exogenous Application of Putrescine on Ripening Changes in Banana cv. Grand Naine. *Int. J. Food Ferment. Technol.*, **5(1)**, 53-58.

Asghari, M., Aghdam, M.S. (2010). Impact of salicylic acid on postharvest physiology of horticultural crops. *Trend Food Sci. Technol.*, **2**, 502-509.

Awad, R.M. (2013). Effect of post-harvest salicylic acid treatments on fruit quality of peach cv. "Florda prince" during cold storage. *Aust. J. Basic Appl. Sci.*, **7**, 920-927.

Bajaj, A. (2004). Effect of fungicide and chemicals on the postharvest life of pear cv. Baggugosha. M.Sc. Thesis GNDU Amritsar.

Baswal, A.K., Dhaliwal, H.S., Singh, Z., Mahajan, B.V.C. and Gill, K.S. (2020). Postharvest application of methyl jasmonate, 1-methylcyclopropene and salicylic acid extends the cold storage life and maintain the quality of 'Kinnow' mandarin (*Citrus nobilis* L. x *C. deliciosa* L.) fruit. *Postharvest Biol. Technol.*, **161**, 111-123.

Chen, N., Wei, W., Yang, Y., Chen, L., Shan, W., Chen, J., Lu, W., Kuang, J. and Wu, C. (2024). Postharvest physiology and handling of guava fruit. *Foods*, **13(5)**, 805-822.

Coggins, C.W., Jr., Scora, R.W., Lewis, L.N. and Knapp, C.F. (1969). Gibberellin-delayed senescence and essential oil changes in the Navel orange rind. *J. Agric. Food Chem.*, **17**, 807-809.

Davarynejad, G.H., Zarei, M., Nasrabadi, M.E. and Ardakani, E. (2015). Effects of salicylic acid and putrescine on storability, quality attributes and antioxidant activity of plum cv. 'Santa Rosa'. *J. Food Sci. Technol.*, **52(4)**, 2053-2062.

Dibble, A.R., Davies, P.J. and Mutschler, M.A. (1988). Polyamine content of long-keeping Alcobaça tomato fruit. *Plant Physiol.*, **86(2)**, 338-340.

Gidado, M.J., Gunny, A.A.N., Gopinath, S.C., Ali, A., Wongs-Aree, C. and Salleh, N.H.M. (2024). Challenges of postharvest water loss in fruits, Mechanisms, influencing factors, and effective control strategies-A comprehensive review. *J. Agric. Food Res.*, **17**, 101249.

Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. *Annu. Rev. Plant Physiol. Mol. Biol.*, **52(1)**, 725-749.

Gupta, N., Jawandha, S.K. and Gill, P.P.S. (2011). Effect of calcium on storage and post- storage quality of peach. *J. Food Sci. Tech.*, **48**, 225-229.

Haider, S.A., Ahmad, S., Khan, A.S., Anjum, M.A., Nasir, M. and Naz, S. (2020). Effects of salicylic acid on postharvest fruit quality of "Kinnow" mandarin under cold storage. *Sci. Hortic.*, **259**, 108843.

Hazarika, T.K. and Marak, T. (2022). Salicylic acid and oxalic acid in enhancing the quality and extending the shelf life of grape cv. Thompson seedless. *Food Sci. Technol. Int.*, **28(6)**, 463-475.

Hosseini, M.S., Fakhar, Z., Babalar, M. and Askari, M.A. (2017). Effect of pre-harvest putrescine treatment on quality and postharvest life of pear cv. Spadona. *Adv. Hort. Sci.*, **31(1)**, 11-18.

Hussain, S., Zahoor, H., Khadijac, F., Salikc, M.R., Alia, M., Hayatc, A. and Mustafad, G. (2021). Postharvest calcium chloride application maintains shelf life and quality of loquat (*Eriobotrya japonica* L.) fruit. *J. Hortic. Sci. Technol.*, **4**, 1-6.

Ilic, Z., Polevaya, Y., Tuvia-Alkalai, S., Copel, A. and Fallik, E. (2001). A short pre-storage hotwater rinse and brushing reduces decay development in tomato, while maintaining its quality. *Trop. Agri. Res. Ext.*, **4**, 1-6.

Jawandha, S.K., Gill, M.S., Singh, N., Gill, P.P.S. and Singh, N. (2012). Effect of post-harvest treatments of putrescine on storage of mango cv. Langra. *Afr. J. Agric. Res.*, **7(48)**, 6432-6436.

Kaur, L. and Kaur, A. (2025). Postharvest PGR's treatment to improve the storability of plum cv. Satluj Purple. *Int. J. Emerg. Technol. Innov. Res.*, **12(2)**, 404-411.

Khademi, Z. and Ershadi, A. (2013). Postharvest application of salicylic acid improves storability of peach (*Prunus persica* cv. Elberta) Fruits. *Int. J. Agri. Crop Sci.*, **5(6)**, 651-655.

Khan, A.S. and Ali, S. (2018). Pre-harvest sprays affecting shelf life and storage potential of fruits (Chapter 9). Preharvest Modulation of Postharvest Fruit and Vegetable Quality. pp. 209-255.

Khan, A.S., Singh, Z., Abbasi, N.A. and Swinny, E.E. (2008). Pre or post-harvest applications of putrescine and low temperature storage affect fruit ripening and quality of "Angelino" plum. *J. Sci. Food Agric.*, **88**, 1686-1695.

Konarska, A. (2015). Characteristics of fruit (*Prunus domestica* L.) skin, structure and antioxidant content. *Int. J. Food Prop.*, **18(11)**, 2487-2499.

Kramer, G.F., Wang, C.Y. and Conway, W.S. (1991). Inhibition of softening by polyamine application in Golden Delicious and McIntosh apples. *J. Am. Soc. Hortic. Sci.*, **116(5)**, 813-817.

Krishna, H., Das, B., Attri, B.L., Kumar, A. and Ahmed, N. (2012). Interaction between different pre-harvest and postharvest treatments on shelf life extension of 'Oregon Spur' apple. *Fruits*, **67**, 31-40.

Luna-Guzman, I., Cantwell, M. and Barret, D.M. (1999). Fresh-cut cantaloupe, effects of $CaCl_2$ dips and heat treatments on firmness and metabolic activity. *Postharvest Biol. Technol.*, **17 (3)**, 201-213.

Madhav, J.V., Sethi, S., Sharma, R.R., Nagaraja, A., Arora, A. and Varghese, E. (2021). Influence of bilayer coating of salicylic acid and edible wax on chilling injury and functional attributes of guava. *J. Food Process. Preserv.*, **45(7)**, e15601.

Malik, A.U. and Singh, Z. (2005). Pre-storage application of polyamines improves shelf life and fruit quality of mango. *J. Hortic. Sci. Biotech.*, **80(3)**, 363-369.

Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd ed., London Academic Press, London, pp. 285-299.

Martinez-Romero, D., Serrano, M., Carbonell, A., Burgos, L., Riquelme, F. and Valero, D. (2002). Effects of postharvest putrescine treatment on extending shelf life and reducing

mechanical damage in apricot. *J. Food Sci.*, **67(5)**, 1706-1712.

Martinez-Romero, D., Valero, D., Serrano, M., Martinez-Sánchez, F. and Riquelme, F. (1999). Effects of post-harvest putrescine and calcium treatments on reducing mechanical damage and polyamines and abscisic acid levels during lemon storage. *J. Sci. Food Agric.*, **79**, 1589-1595.

Meng, X.Z., Fang, J.Z., Fu, M.R., Jiao, W.X., Ren, P.F., Yang, X.Y. (2023). The role of 1-methylcyclopropylene (1-MCP) and salicylic acid (SA) in induced resistance of postharvest fruits. *Hortic.*, **9**, 108.

Messiaen, J., Cambier, P. and Van Cutsem, P. (1997). Polyamines and pectins (ion exchange and selectivity). *Plant Physiol.*, **113(2)**, 387-395.

Peng, Y.J., Yang, J.F., Li, X., Zhang, Y.L. (2021). Salicylic acid, Biosynthesis and signalling. *Annu. Rev. Plant Biol.*, **72**, 761-791.

Sams, C.E. (1999). Preharvest Factors Affecting Postharvest Texture. *Postharvest Biol. Technol.*, **15**, 249-254.

Serrano, M., Martinez-Madrid, M.C., Martínez, G., Riquelme, F., Pretel, M.T. and Romojaro, F. (1996). Role of polyamines in chilling injury of fruit and vegetables. *Food Sci. Technol. Int.*, **2(4)**, 195-199.

Serrano, M., Martinez-Romero, D., Guillen, F. and Valero, D. (2003). Effects of exogenous putrescine on improving shelf life of four plum cultivars. *Postharvest Biol. Technol.*, **30(3)**, 259-271.

Shibairo, S.I., Upadhyaya, M.K. and Toivonen, P.M. (2002). Changes in water potential, osmotic potential, and tissue electrolyte leakage during mass loss in carrots stored under different conditions. *Sci. Hortic.*, **95(1-2)**, 13-21.

Singh, R. (2005). Effect of post-harvest treatments and packaging on shelf-life of ber cv. Umran at cool temperature. M.Sc. Thesis GNDU Amritsar.

Tareen, M.J., Abbasi, N.A. and Hafiz, I.A. (2012). Effect of salicylic acid treatments on storage life of peach fruits cv. 'Flordaking'. *Pak. J. Bot.*, **44(1)**, 119-124.

Valero, D., Martinez-Romero, D. and Serrano M. (2002). The role of polyamines in the improvement of the shelf life of fruit. *Trends. Food Sci. Technol.*, **13(6-7)**, 228-234.

Zaghoul, A.E., El-Hadidy, J.A., Abo Ogiela, H.M. (2016). Effect of putrescine application on fruit quality of Florida Prince and Early Grande peaches during cold Storage. *Alex. J. Agric. Sci.*, **61**, 587-596.

Zainuri, J. D. C., Wearing, A. H., Coates, L. and Terry, L. (2001). Effects of phosphonate and salicylic acid treatments on anthracnose disease development and ripening of 'Kensington Pride' mango fruit. *Aust. J. Exp. Agric.*, **41**, 805-813.

Zhang, H.Y., Ma, Z.M., Wang, J.J., Wang, P., Lu, D.Y., Deng, S.F., Lei H.L., Gao Y.F. and Tao, Y. (2021). Treatment with exogenous salicylic acid maintains quality, increases bioactive compounds, and enhances the antioxidant capacity of fresh goji (*Lycium barbarum* L.) fruit during storage. *LWT-Food Sci. Technol.*, **140**, 110837.